A One-Dimensional Model for Dispersive Wave Turbulence

نویسندگان

  • A. J. Majda
  • D. W. McLaughlin
  • E. G. Tabak
  • Stephen Wiggins
چکیده

A family of one-dimensional nonlinear dispersive wave equations is introduced as a model for assessing the validity of weak turbulence theory for random waves in an unambiguous and transparent fashion. These models have an explicitly solvable weak turbulence theory which is developed here, with Kolmogorov-type wave number spectra exhibiting interesting dependence on parameters in the equations. These predictions of weak turbulence theory are compared with numerical solutions with damping and driving that exhibit a statistical inertial scaling range over as much as two decades in wave number. It is established that the quasi-Gaussian random phase hypothesis of weak turbulence theory is an excellent approximation in the numerical statistical steady state. Nevertheless, the predictions of weak turbulence theory fail and yield a much flatter (|k|−1/3) spectrum compared with the steeper (|k|−3/4) spectrum observed in the numerical statistical steady state. The reasons for the failure of weak turbulence theory in this context are elucidated here. Finally, an inertial range closure and scaling theory is developed which successfully predicts the inertial range exponents observed in the numerical statistical steady states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic and turbulent behavior of unstable one-dimensional nonlinear dispersive waves

In this article we use one-dimensional nonlinear Schrödinger equations ~NLS! to illustrate chaotic and turbulent behavior of nonlinear dispersive waves. It begins with a brief summary of properties of NLS with focusing and defocusing nonlinearities. In this summary we stress the role of the modulational instability in the formation of solitary waves and homoclinic orbits, and in the generation ...

متن کامل

Dispersive wave turbulence in one dimension

In this article, we study numerically a one-dimensional model of dispersive wave turbulence. The article begins with a description of the model which we introduced earlier, followed by a concise summary of our previous results about it. In those previous studies, in addition to the spectra of weak turbulence (WT) theory, we also observed another distinct spectrum (the “MMT spectrum”). Our new r...

متن کامل

Simulation of Wave Interactions and Turbulence in One-Dimensional Water Waves

The weakor wave-turbulence problem consists of finding statistical states of a large number of interacting waves. These states are obtained by forcing and dissipating a conservative dispersive wave equation at disparate scales to model physical forcing and dissipation, and by predicting the spectrum, often as a Kolmogorov-like power law, at intermediate scales. The mechanism for energy transfer...

متن کامل

(1+1)-dimensional turbulence systems reduced from (2+1)-dimensional Lax integrable dispersive long wave equation

After extending the Clarkson-Kruskal’s direct similarity reduction ansatz to a more general form, one may obtain various new types of reduction equations. Especially, some lower dimensional turbulence systems or chaotic systems may be obtained from the general type of similarity reductions of a higher dimensional Lax integrable model with nonintegrable boundary and/or the initial conditions. In...

متن کامل

Application of G'/G-expansion method to the (2+1)-dimensional dispersive long wave equation

In this work G'/G-expansion method has been employed to solve (2+1)-dimensional dispersive long wave equation. It is shown that G'/G-expansion method, with the help of symbolic computation, provides a very effective and powerful mathematical tool, for solving this equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997